
LLNL-CONF-655453

Application-Agnostic Streaming
Bayesian Inference via Apache
Storm

T. Wasson, A. P. Sales

June 5, 2014

The 2014 International Conference on Advances in Big Data
Analytics
Las Vegas, NV, United States
July 21, 2014 through July 24, 2014



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Application-Agnostic Streaming Bayesian Inference
via Apache Storm

T. Wasson1 and A. P. Sales1
1Data Analytics and Decision Sciences, Lawrence Livermore National Laboratory, Livermore, CA, USA

Abstract— Given the increasing rates of data generation,
along with increasingly ubiquitous sensors to measure it,
analytical capabilities must be developed to keep pace.
Although existing techniques have had success with some
machine learning and statistical inferential tasks, these tasks
are generally either limited in scope or are not capable of
inferring the full probability densities (necessary for many
sophisticated statistical analytical approaches) at a fast
enough rate in order to match that of data arrival.

We present a scalable framework for performing statistical
density estimation on-the-fly on streams of data. This is
achieve via a parallelized Apache Storm implementation
of a particle learning algorithm. We demonstrate how to
construct such an approach from the Storm primitives,
and build upon these with novel contributions to Storm.
Importantly, although our approach is exemplified via our
particle learning framework, the ideas herein are generically
applicable and agnostic of underlying modeling choices.

Source code available for Storm extensions upon request.
Contact wasson3@llnl.gov.

Keywords: streaming data processing; density estimation; online
statistical inference; Apache Storm; Bayesian statistics

1. Introduction
In virtually every domain of science, advances in data

collection technologies have been greatly outpacing ad-
vances in the development of capabilities to satisfactorily
store, process, and analyze such large volumes of data.
There exists a consensus that there is a great deal to be
learned and gained from these data, but how to make
sense and extract meaningful information from these data
streams of ever increasing volume and complexity remains
a major challenge. While batch techniques for retrospective
analysis, like Hadoop, Spark, and others, have resulted in
powerful nuanced analytical approaches [1, 2], many data
sources are too voluminous and arrive at too high a rate
to be stored and post-processed via batch approaches and
must be processed on-the-fly by streaming tools. Numerous
techniques and software packages exist for performing a
variety of machine learning and statistical inference tasks on
streaming data [3, 4, 5, 6], but these are generally limited
to relatively focused (albeit extremely useful) methods, such
as classification via decision trees, support vector machines,
or random forests, clustering, and regression techniques.

We present an implementation of a Bayesian density
estimation technique via the stream processing framework
Apache Storm, which can perform inference on-the-fly on
data streams. Density estimation is performed via a sequen-
tial Monte Carlo algorithm, namely particle learning, and
can be used in order to accomplish useful tasks such as clus-
tering,classification, anomaly detection, and drift detection.
The sequential nature of this algorithm allows the statistical
model to be updated with each observations that arrives in
the data stream, such that data need not be stored for batch
processing. The Storm implementation allows for parallel
computations within the streaming framework, substantially
easing the computational burden entailed by these types of
sophisticated statistical modeling. Finally, we also present
novel extensions to Storm itself to facilitate this implementa-
tion. Altogether, we have developed a substantially powerful
tool for performing sophisticated statistical inference on
streaming data, allowing novel analyses and providing novel
Storm additions.

The remainder of this article is structured as follows. We
describe Storm and its utility in Section 2.1. In Section 2.2,
we describe ParticleStorm, with the statistical model being
described in Section 2.2.1, the capabilities and functionalities
of the individual components of ParticleStorm topology
being described in Section 2.2.2, and how these components
work together to form a cohesive whole in Section 2.2.3. Our
contributions to the Storm project are listed in Section 3, and
our final remarks are given in Section 4.

2. Approach
2.1 Apache Storm

Apache Storm [7] is a distributed fault-tolerant real-time
stream processing framework. Using Storm, arbitrary event-
based functions can be calculated on-the-fly on inbound
data streams, with the calculations spread across compute
clusters, including easy deployment on cloud computing
frameworks such as Amazon Web Services. Storm has been
used effectively for a broad variety of applications [8],
including various data analytics, machine learning tasks, and
continuous computation tasks.

Storm includes a collection of fundamental software and
terminology abstractions necessary to describe and imple-
ment its capabilities. A complete computational system in
Storm is a directed graph, called a topology. The nodes of



the topology are spouts, which emit data, and bolts, which
ingest and perform computations on data, optionally emitting
results of these computations downstream to other bolts.
Data and other communications within a topology are carried
within streams of tuples. Streams may be subscribed to by
any bolt, except for direct streams, in which the producer
can decide explicitly which bolt is to receive a given tuple.
Spouts and bolts may produce, and bolts may consume,
any number of streams. Tuples are vectors of arbitrarily-
typed elements, which may contain data or its derivations,
or may contain messages important for the control schemes
overlaid on topologies to enforce fault tolerance, exactly-
once processing, and other necessary overhead important to
a resilient processing framework.

Storm is written in Java and Clojure, and hence designed
to run in Java Virtual Machines, but it supports a protocol
for communication with external processes via its multi-
language (multilang) protocol. Bolts that communicate with
external processes for data processing via the multilang
protocol are called ShellBolts, and will be discussed further
in Section 2.2.2.

Recent development in Storm has been primarily focused
on Trident, an abstraction allowing implementation of many
commonly-desired use cases with dramatically less work
necessary for the developer. However, Trident imposes re-
strictions to achieve these benefits, including removing the
explicit definition of bolts and their stream subscriptions, and
hence the ability to enforce cycles and build nuanced control
schemas of the user’s design. As such, Trident is eminently
practical for the majority of tasks, but insufficient for some
complex situations such as those discussed below.

Storm is one of many stream processing frameworks
presently available, including Apache S4, Samza, Spark
Streaming, and others. We pursued development with Storm
because it allowed the finest-grained control of processing
unit (bolt) heterogeneity, the greatest control over data
streams (specifically, allowing arbitrary communications
within the topology), and maturity and support in the com-
munity.

2.2 Storm for density estimation
Density estimation is a particularly powerful technique for

learning from unstructured data, and we discuss here how it
is carried out via particle learning, followed by a description
of how particle learning can be implemented in Storm.

2.2.1 Streaming density estimation using particle learn-
ing

Consider a state-space model that is evolving over time,
where the true underlying model state, x, is unobservable
and information about it is only obtained via noisy mea-
surements, y, at each time step, t. The state vector at time
t, xt, given all observed measurements up to that time step,

y1:t, can be estimated via its filtering distribution:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

, (1)

where the predictive distribution of state xt given the ob-
served measurements up to the previous time step, y1:t−1,
is given by

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1. (2)

In effect, Equation (1) is a simple application of Bayes
theorem, where the predictive distribution p(xt|y1:t−1) is
treated as the prior for xt before the arrival of measurement
yt. In most cases, Equations (1) and (2) are analytically
intractable, but can be approximated by particle filtering.

Particle filtering [9] is a sequential Monte Carlo method in
which the current state variable is estimated by a weighted
average of a set of random i.i.d. samples, called particles,
from the state variables obtained by its filtering density
given in Equation (1)1. As the number of particles increases,
the particle filter approximation converges to the actual
distribution.

Let {x(i)
t }Ni=1 be a set of N particles generated from

the filtering distribution. The predictive distribution can be
approximated by

p(xt|y1:t−1) '
1

N

N∑
i=1

δ
x
(i)
t
, (3)

where δ
x
(i)
t

is the Dirac delta function centered at x(i)
t . By

substituting (3) into (1), the filtering distribution can be
approximated via a discretization of p(xt|y1:t) into particles
{x(i)

t }Ni=1 with probabilities {w(i)
t }Ni=1,

p(xt|y1:t) '
N∑
i=1

w
(i)
t δ

x
(i)
t
,

w
(i)
t =

p(yt|x(i)
t )∑N

i=1 p(yt|x
(i)
t )

(4)

Particle filters operate simply by iterating between (3) and
(4) at each time step with the arrival of new observations. A
common shortcoming of particle filters is that the weights of
particles in regions of high posterior density steadily increase
to the point that eventually a single particle dominates the
filter, and the weights of all other particles become negligible
[10]. This so-called degeneracy problem can be directly
quantified via the effective sample size of the particle set,

Neff =
N

1 + Var({w(i)
t }Ni=1)

, (5)

such that the smaller the effective sample size of a filter, the
more severe the degeneracy problem. A brute force solution

1To be precise, particle filtering algorithms entail numerical approxima-
tions of the joint posterior distribution p(x1:n|y1:n). Equation (1) shows
only the marginal p(xn|y1:n) for simplicity.



to this problem is to use a very large N , but this leads to
prohibitively large computational burdens. A more effective
approach entails eliminating particles with small weight via
a resampling step.

The resampling step stochastically enriches the particle set
with high-importance particles, by eliminating particles with
small importance weights. It works by sampling N particles
with replacement from the set of particles x(i)

t according to
their respective weights. The weights of the new generation
of particles is set to 1/N . Samples with large weights are
likely to be drawn multiple times, whereas those with small
weights are likely to be drawn very few times or not at all.
Thus, particle filtering can be seen as a type of survival of
the fittest algorithm, where higher weight particles are likely
to produce more “offspring.”

While resampling attenuates the degeneracy problem, it
may lead to sample impoverishment. That is, because high-
weight particles are likely to be drawn multiple times, over
time the diversity of the samples is drastically reduced.
Sample impoverishment is detrimental to the filter accuracy,
as it results in worse approximation of the state distribution.
Liu and Chen (1998) [11] provide a detailed discussion of
the merits of resampling.

Particle learning (PL) [12] is a type of particle filtering
algorithm that overcomes both the degeneracy and the sam-
ple impoverishment drawbacks of common particle filters.
In fact, Carvalho et al. (2010) [12] demonstrated that PL’s
accuracy is not only superior to standard particle filter algo-
rithms, but is comparable to MCMC samplers. PL improves
upon traditional particle filtering algorithms in two ways:
Conditional sufficient statistics, s, are used to represent the
posterior distribution of unknown parameters, θ, which
is learned (hence, particle learning) as new observations
arrive. The particles now are represented by {z(i)

t =

(x
(i)
t , s

(i)
t , θ

(i)
t )}Ni=1, which are generated from the predictive

distribution p(xt, θ|y1:t−1) (likewise, z̃t is sampled from the
filtering distribution p(xt, θ|y1:t).
The Resample-Propagate algorithm (shown in Table 1) is
used in order to obtain exact samples from the particle
approximation. Performing resample first and propagate sec-
ond reduces approximation errors, because states are only
propagated after being informed by the new observation
tt+1. Hence, only “good” particles are propagated.

We use the PL algorithm for composite mixture mod-
els, where each mixture component is a composite of in-
dependent distributions for each element of the response
and predictor arrays. This approach enables modeling of
data that includes multiple disparate feature types into a
single probability model without resorting to complicated
embeddings that would preclude sequential analysis. This
model is described in detail in Sales et al. (2013) [13].

Table 1: Particle learning algorithm. Initialization is per-
formed once, and steps 1 through 3 are repeated for each
observation that arrives in the data stream.

Step Task Description

Step 0 Initialization Set the starting values of the N particles
{z(i)t = (x

(i)
t , θ

(i)
t )}Ni=1

Step 1 Evaluation Evaluate new observation yt+1 under the
current model, p(yt+1|z(i)t )

Step 2 Resample Resample {z̃(i)t }Ni=1 with weight wt ∝
p(yt+1|z(i)t )

Step 3 Propagate z
(i)
t from p(z

(i)
t |z̃(i)t )

2.2.2 Storm implementation
We have implemented streaming density estimation via

particle learning in Storm to yield a tool entitled Parti-
cleStorm. ParticleStorm functions in either inference mode,
in which model parameters are updated after each data point
is processed and resampling may or may not occur (though
propagation always does), or evaluation mode, in which all
parameters are fixed and data points are evaluated as quickly
as possible under the current ensemble of models. Because
particle learning in inference mode requires model parameter
updates, and those updates require knowledge gained from
the entire ensemble en masse, direct asynchronous communi-
cation between some (but not all) bolts is a necessity. Indeed,
ParticleStorm has a number of characteristics that make it
somewhat different from the majority of Storm frameworks,
and in aggregate preclude the use of Trident. Specifically:

• ParticleStorm relies on an external C++ executable
implementation of particle learning, entitled PF, modi-
fied to perform task-specific functions within the larger
distributed Storm topology.

• ParticleStorm requires exactly-once computation of
data points.

• ParticleStorm requires that between data points, param-
eters of some bolts are updated and possibly retrieved
or overwritten.

• ParticleStorm must be switchable between inference
and evaluation mode on-the-fly via an external control
mechanism

Hence, ParticleStorm is constructed from the base spout
and bolt abstractions.

It is important to note that Storm is quite complex, but
much of that complexity is usually hidden from the devel-
oper, particularly for common or straightforward applica-
tions. For the implementation of ParticleStorm, we extended
Storm to accommodate desirable properties, such as syn-
chronicity and exactly-once data processing. Our extensions
make heavy use of Storm’s CoordinatedBolt class and other
aspects of transactional topologies [14]. These include a
number of control mechanisms, in terms of additional bolts
and streams, to facilitate guaranteed exactly-once message



Fig. 1: ParticleStorm Storm topology. ParticleStorm is composed of a spout, a model-specific number of N ParticleBolts
with one ParticleBolt per particle, a CoordinatorBolt, and a DataRecorder. The default stream flows through the entirety
of the topology, carrying first data points and then log likelihoods derived from those data points. Two coordination streams connect
each ParticleBolt to the CoordinatorBolt. Tuples of data are generated by the spout and passed to all ParticleBolts, where they are
evaluated under each particle. The log likelihoods of the data points are passed on default to the CoordinatorBolt, which combines
them and in turn passes the complete model log likelihood along to the DataRecorder, also on default. The coordination streams
coordinator_to_particle and particle_to_coordinator are used to allow the CoordinatorBolt to communicate selectively
with each ParticleBolt, performing operations including sending and retrieving model parameters during inference. Walkthroughs of typical
processing runs are given in more detail in Section 2.2.3.

passing. For example, usage of CoordinatedBolts implies
the creation of a wrapper CoordinatedBolt and its “delegate”
bolt, being the bolt of the developer’s design. The Coordinat-
edBolt intercepts communications to and from the delegate
and, along with its own use of coordination tuples passed
on implicitly-created coordination streams, tracks how many
inbound tuples a delegate can expect to receive from its
upstream bolts before it can be confident in having received
all tuples exactly once.

Additionally, ParticleStorm relies on transactional spouts,
necessary to ensure that an entire ‘batch’ of tuples is pro-
cessed exactly once and to allow potential replaying of tuples
upon failure, which transparently create separate spout coor-
dinator and spout emitter tasks, and also use special-purpose
batch initialization and commit tuples. Storm topologies
are transparently augmented with an ‘acker’ bolt to handle
acknowledgments of tuples and hence be able to trigger
proper replaying of a data tuple if a descendant tuple fails.
We explicitly acknowledge the importance and relevance of
these usually-hidden complexities, but going forward, we
choose to set them aside and focus on the explicit portions
of our topology in subsequent descriptions and figures.

The (explicit) ParticleStorm topology (Figure 1) is com-
posed of a spout, one or more ParticleBolts, a Coordina-
torBolt, and a DataRecorder bolt, interconnected by several
communications streams and one data stream. We describe
the components of the topology here, and give examples
of its functionality in Section 2.2.3 to illustrate how the
components operate in concert to perform inference and

evaluation.

Streams: ParticleStorm has three types of streams: de-
fault, coordinator_to_particle, and
particle_to_coordinator, which function as follows.

• default carries data observations, represented as pipe-
delimited feature vectors, and calculations derived from the
data observations.

• coordinator_to_particle is a direct stream by which
the CoordinatorBolt may communicate with ParticleBolts.
This stream carries issued commands from the Coordi-
natorBolt, with replies expected to arrive on parti-
cle_to_coordinator. Tuples on this stream have three
fields, and are of the form [ID, command, content].
ID is a unique identifier used to track responses to this
command. command is one of requestParameters,
assignParameters or propagate. When command
is requestParameters or propagate, content
is empty. When command is assignParameters,
content contains the model parameters to be assigned to
the destination ParticleBolt.

• particle_to_coordinator is a direct stream by which
ParticleBolts may communicate with the CoordinatorBolt.
This stream carries replies from ParticleBolts to the Co-
ordinatorBolt, in response to commands issued on co-
ordinator_to_particle. Tuples on this stream have
two fields, and are of the form [ID, content]. As
with coordinator_to_particle, ID is a unique iden-
tifier, and is identical to the ID in the command to
which this tuple is responding. content is the response
to the specific command received. When command is
assignParameters or propagate, content is ack.
When command is requestParameters, content con-
tains the model parameters of this ParticleBolt.



ParticleStorm spout: The spout in ParticleStorm can be any
TransactionalSpout [14], but must also incorporate the Storm
Signals framework [15]. Storm Signals allow asynchronous com-
munication with the spout outside of the traditional streams / tuples
mechanism. This communication allows the spout to be paused
and resumed as necessary, which is important during initialization
and inference (described in Section 2.2.3), and allows a user to
selectively pause the processing in the topology.

ParticleBolts: ParticleBolts are the fundamental source of par-
allelism employed in ParticleStorm. Each ParticleBolts hosts one
particle in the particle learning model, and hence the number of
ParticleBolts, equal to the number of particles, is model-dependent
and determined at runtime. ParticleBolts extend ShellBolts, as the
underlying modeling is done in the external PF binary executable.
ParticleBolts subscribes to the default stream from the spout
and coordinator_to_particle stream from the Coordina-
torBolt, and outputs default and particle_to_coordi-
nator streams. Data tuples received on default are scored
under the modeled particle, and log likelihoods are subsequently
emitted on default. Commands from the CoordinatorBolt are
received on coordinator_to_particle and responses to
those commands are emitted on particle_to_coordinator.

CoordinatorBolt: The CoordinatorBolt is the driver of Parti-
cleStorm. There is exactly one CoordinatorBolt in the ParticleStorm
topology, and it is responsible for tasking ParticleBolts to perform
operations along with interpreting their output. Like ParticleBolts,
the CoordinatorBolt extends ShellBolt and delegates work to PF.
The CoordinatorBolt subscribes to the default and parti-
cle_to_coordinator streams from each ParticleBolt, and out-
puts default and coordinator_to_particle streams. In
both evaluation and inference mode, the CoordinatorBolt receives
log likelihoods from all ParticleBolts, weighing them appropriately
to produce an overall model log likelihood for a data point, and
emits that output. In inference mode, the CoordinatorBolt will
determine whether a resample step is necessary. If so, the new
vector of particles is sampled, and lists are created of particles to
be overwritten and particles to provide parameters to do the over-
writing. The CoordinatorBolt will emit a requestParameters
command to each ‘overwriting’ particle, received the particle’s
parameters on particle_to_coordinator, and then emit
an assignParameters command to overwrite the appropriate
particle and await acknowledgment (indicating success), at which
point the resample step is complete. ParticleBolts will then be
tasked to update their parameters via a propagate command.

DataRecorder: The DataRecorder is responsible for processing,
and potentially saving, the output of the data evaluation. It sub-
scribes to the default stream from the CoordinatorBolt, which
provides the log likelihood of each data point evaluated under the
entire model. Our DataRecorder bolt can be set to either save results
in an HDFS store or discard them and instead save the trained
models.

2.2.3 ParticleStorm runtime modes and descriptions
As discussed previous, ParticleStorm operates in two discrete

modes, being evaluation and inference. The two modes are largely
identical in practice, with the primary differences being that in
inference mode, resampling and propagation steps are included
after each data point is evaluated.

As we describe the functionality of ParticleStorm, we make two
simplifying choices for clarification: first, common underlying tuple

Table 2: AssignParameters in ParticleStorm. Parameter
assigning scheme. This occurs in initialization and inference
mode.

Component Action

CoordinatorBolt Emit direct parameters on stream coordina-
tor_to_particle to ParticleBolt

CoordinatorBolt Wait for ack

ParticleBolt Receive parameters on stream coordinator-
_to_particle

ParticleBolt Set parameters
ParticleBolt Emit direct ack on stream particle_to_co-

ordinator to CoordinatorBolt

CoordinatorBolt Receive ack on stream particle_to_co-
ordinator from ParticleBolt

CoordinatorBolt End wait

Table 3: RequestParameters in ParticleStorm. Parameter
requesting scheme. This occurs in inference mode and
optionally when saving models.

Component Action

CoordinatorBolt Emit direct requestParameters on stream
coordinator_to_particle to each Par-
ticleBolt

CoordinatorBolt Wait for parameters

ParticleBolts Receive requestParameters on stream co-
ordinator_to_particle

ParticleBolts Emit direct parameters on stream parti-
cle_to_coordinator to CoordinatorBolt

CoordinatorBolt Receive parameters on stream parti-
cle_to_coordinator from ParticleBolt

CoordinatorBolt End wait

chatter present in all Storm transactional topologies is omitted,
and second, we present the steps in the algorithm as if they were
sequential. Importantly, Storm is quite asynchronous, and handling
this asynchrony in a way that is fault-tolerant and dependable is
nontrivial. Indeed, correctly handling asynchrony was the motiva-
tion for much of our novel additions to Storm itself, discussed later
in Section 3.

We describe evaluation and inference modes together in Table 5.
First, all components take part in the Initialize process, described
in Table 4. This process is composed of the CoordinatorBolt
initializing the particle learning model, either from a given ini-
tial model or de novo, and transmitting the appropriate model
parameters to each ParticleBolt via the AssignParameters process
(Table 2). AssignParameters and RequestParameters (Table 3) are

Table 4: Initialize in ParticleStorm. This occurs at startup
in both inference and evaluation modes.

Component Action

CoordinatorBolt Process initial model files or set parameters de novo
CoordinatorBolt AssignParameters to all ParticleBolts
CoordinatorBolt Enable spout via Storm signals



Table 5: Evaluation and inference mode functionality of ParticleStorm. We omit error checking and housekeeping tuples
integral to all Storm topologies for clarity.

Control Component Action

All components Initialize

Spout Receive enable on stream Storm signals

For each data tuple
ParticleBolts Receive data on stream default
ParticleBolts Emit log likelihood on stream default

CoordinatorBolt Receive all log likelihoods on stream default
CoordinatorBolt Calculate aggregate log likelihood
CoordinatorBolt Emit aggregate log likelihood on stream default

If inference mode
If resample necessary

CoordinatorBolt Calculate Overwriting Particles
CoordinatorBolt Calculate Overwritten Particles
CoordinatorBolt RequestParameters from Overwriting Particles
CoordinatorBolt AssignParameters to Overwritten Particles

End if
CoordinatorBolt Emit direct propagate on stream coordinator_to_particle

to ParticleBolts
End if

DataRecorder Receive aggregate log likelihood on stream default
DataRecorder Record aggregate log likelihood

End for

complementary functions by which the CoordinatorBolt sets or
retrieves model parameters from the individual ParticleBolts. They
involve communicating over the coordinator_to_particle
and particle_to_coordinator direct streams to issue com-
mands and receive responses.

After successful initialization, the CoordinatorBolt signals the
spout via Storm Signals to indicate that the topology has been fully
configured and is ready to process. At this point, the spout emits
data tuples (one-at-a-time in ParticleStorm, as particle learning
requires model updates per-data-point), which are received by all
of the ParticleBolts via an ‘all grouping’ [16]. Each ParticleBolts
evaluates the data tuple under its particle alone and emits the log
likelihood on the default stream. The CoordinatorBolt receives
the log likelihoods, aggregates them, and emits the overall log
likelihood of the data point on the default stream, which the
DataRecorder receives and records per the developer’s design.

In evaluation mode, this data point is now fully processed, and
the next data point is begun. In inference mode, however, the resam-
ple and propagate steps are undertaken first. If the CoordinatorBolt
determines that resampling is necessary, a new vector of particles
is calculated and differences from the previous vector are deter-
mined. Particles to spawn descendants, or overwriting particles, are
queried for their parameters via RequestParameters. Particles to be
overwritten then have these new parameters assigned to them via
AssignParameters. Finally, regardless of whether resampling was
necessary, the CoordinatorBolt emits a propagate command to

each ParticleBolt on the coordinator_to_particle stream
and awaits ack responses on the particle_to_coordinator
stream. This marks the complete processing of this data point in
inference mode, and the topology is now ready for the next data
point.

3. Extensions to the Storm framework
In the process of developing ParticleStorm, it was necessary

to develop a collection of additional capabilities for the Storm
framework itself. These primarily concerned extension of preex-
isting capabilities to function inside of transactional topologies.
Independent of the direct benefits of ParticleStorm itself, these
extensions add useful functionality of Storm and will be contributed
to the larger Storm community.

Although Storm allows for transactional topologies, and allows
for ShellBolts, it does not allow for transactional ShellBolts. Hence,
from the Storm ShellBolt class, we created a BatchShellBolt.
This implied the modification of CoordinatedBolt to work around
synchronization issues, because coordination tuples intrinsic to
the functionality of CoordinatedBolt can otherwise be inadver-
tently processed before a data tuple is completely processed by
the delegate shell process. Additionally, we extended the Storm
multilang protocol to include ‘housekeeping’ commands between
CoordinatedBolt and its delegate process, to inform the delegate of
batch completion and allow the delegate to inform CoordinatedBolt
of acknowledgment and completion of batch-finishing steps.



We also modified the ShellBolt class to allow direct execution
of binary executables included in the Storm deployable uberjar.
Previously, only system-level executables could be called, and they
would be called on scripts included in the uberjar (e.g., Python or
Ruby programs).

Finally, Storm Signals provides functionality to traditional Storm
spouts, but not to transactional spouts, so we developed a transac-
tional Storm Signals spout.

4. Discussion
As various aspects of our world are becoming increasingly

measured with innumerable sensors of varying types, streaming
data is becoming ubiquitous, and is vastly increasing in volume.
Performing sophisticated analytics on these types of data is chal-
lenging and often infeasible because these computations are usually
burdensome, and cannot keep up with the inflow rate of data.
Storm, and other streaming frameworks, enable parallel processing
of streaming data, allowing real-time analysis on data streams.

Here, we have presented ParticleStorm, an implementation of
the particle learning algorithm in the Storm stream processing
framework, a first of its kind. Particle learning is a sequential
Monte Carlo algorithm that enables Bayesian statistical modeling to
learn posterior probability densities via online inference at scale. In
particular, ParticleStorm implements particle learning for composite
mixture models, which allow nuanced models to be learned of
phenomena with different numbers and different types of features,
and to use those models to evaluate new data, with direct extension
to tasks including clustering, classification, regression, anomaly
detection, and drift detection.

Storm is still in its infancy, and although it has garnered a
significant following, with users of the likes of Google, Yahoo,
and Groupon, the literature on Storm is still scarce, which can
present a high barrier to entry, especially for tasks outside of the
traditional comfort zone addressed by Trident. One of the goals
of this manuscript has been to reduce the entrance difficulty by
providing a guide to other developers interested in uses of Storm
beyond its most common utilities.

This implementation was possible via our extensions to the
Storm project. In particular we have added the capability of
Storm to delegate processing to external binary executables while
still enforcing fault-tolerant exactly-once (transactional) process-
ing. ParticleStorm is intentionally modular and easily extensible,
allowing various pre- and post-processing extensions to be easily
integrated. Its ideas, and the Storm extensions developed to allow
its implementation, provide benefit for future efforts to use Storm,
or other streaming frameworks, for complex statistical inference
and machine learning tasks.

5. Acknowledgments
We would like to thank Vera Bulaevskaya and Daniel Merl

for their invaluable contributions to this work. This work was
performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344.

References
[1] Apache Mahout: Scalable machine learning and data mining.

https://mahout.apache.org/ [Accessed: 2014-04-19]
[2] Apache Spark - Lightning-Fast Cluster Computing.

http://spark.apache.org/ [Accessed: 2014-04-19]
[3] Jubatus: Distributed Online Machine Learning Framework.

http://jubat.us/ [Accessed: 2014-04-19]
[4] SAMOA. https://github.com/yahoo/samoa [Accessed: 2014-

04-11]
[5] Storm-Pattern. https://github.com/quintona/storm-pattern [Ac-

cessed: 2014-04-11]
[6] Trident-ML. https://github.com/pmerienne/trident-ml [Ac-

cessed: 2014-04-11]
[7] Storm. http://storm.incubator.apache.org/ [Accessed: 2014-

04-17]
[8] Storm applications in industry.

https://github.com/nathanmarz/storm/wiki/Powered-By
[Accessed: 2014-04-19]

[9] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel ap-
proach to nonlinear/non-Gaussian Bayesian state estimation,”
Radar and Signal Processing, IEE Proceedings F, vol. 140,
no. 2, pp. 107–113, Apr. 1993.

[10] A. Doucet and A. M. Johansen, “A tutorial on particle filtering
and smoothing: fifteen years later,” in The Oxford Handbook
of Nonlinear Filtering, 2011, pp. 656–704.

[11] J. S. Liu and R. Chen, “Sequential Monte Carlo Methods
for Dynamic Systems,” Journal of the American Statistical
Association, vol. 93, pp. 1032–1044, 1998.

[12] C. M. Carvalho, M. S. Johannes, H. F. Lopes, and N. G.
Polson, “Particle learning and smoothing,” Statistical Science,
vol. 25, no. 1, p. 88âĂŞ106, 2010.

[13] A. P. Sales, C. Challis, R. Prenger, and D. Merl, “Semi-
supervised classification of texts using particle learning for
probabilistic automata,” in Bayesian Theory and Applications,
P. Damien, P. Dellaportas, N. G. Polson, and D. A. Stephens,
Eds. Oxford University Press, Jan. 2013.

[14] Transactional topologies in Storm.
https://github.com/nathanmarz/storm/wiki/Transactional-
topologies [Accessed: 2014-04-17]

[15] P. T. Goetz. Storm signals. https://github.com/ptgoetz/storm-
signals [Accessed: 2014-04-18]

[16] Storm concepts. https://github.com/nathanmarz/storm/wiki/Concepts
[Accessed: 2014-04-19]


